Nonholonomic Orthogonal Learning Algorithms for Blind Source Separation

نویسندگان

  • Shun-ichi Amari
  • Tianping Chen
  • Andrzej Cichocki
چکیده

Independent component analysis or blind source separation extracts independent signals from their linear mixtures without assuming prior knowledge of their mixing coefficients. It is known that the independent signals in the observed mixtures can be successfully extracted except for their order and scales. In order to resolve the indeterminacy of scales, most learning algorithms impose some constraints on the magnitudes of the recovered signals. However, when the source signals are nonstationary and their average magnitudes change rapidly, the constraints force a rapid change in the magnitude of the separating matrix. This is the case with most applications (e.g., speech sounds, electroencephalogram signals). It is known that this causes numerical instability in some cases. In order to resolve this difficulty, this article introduces new nonholonomic constraints in the learning algorithm. This is motivated by the geometrical consideration that the directions of change in the separating matrix should be orthogonal to the equivalence class of separating matrices due to the scaling indeterminacy. These constraints are proved to be nonholonomic, so that the proposed algorithm is able to adapt to rapid or intermittent changes in the magnitudes of the source signals. The proposed algorithm works well even when the number of the sources is overestimated, whereas the existent algorithms do not (assuming the sensor noise is negligibly small), because they amplify the null components not included in the sources. Computer simulations confirm this desirable property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

On The Use of Non-orthogonal Approximate Joint Diagonalization Algorithms for Blind Source Separation in Presence of Additive Noise

We present in this paper a non-orthogonal algorithm for the approximate joint diagonalization of a set of matrices. It is an iterative algorithm, using relaxation technique applied on the rows of the diagonalizer. The performances of our algorithm are compared with usual standard algorithms using blind sources separation simulations results. We show that the improvement in estimating the separa...

متن کامل

A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation

A new efficient algorithm is presented for joint diagonalization of several matrices. The algorithm is based on the Frobenius-norm formulation of the joint diagonalization problem, and addresses diagonalization with a general, non-orthogonal transformation. The iterative scheme of the algorithm is based on a multiplicative update which ensures the invertibility of the diagonalizer. The algorith...

متن کامل

Stable Learning Algorithm for Blind Separation of Temporally Correlated Signals Combining Multistage Ica and Linear Prediction

We newly propose a stable algorithm for blind source separation (BSS) combining multistage ICA (MSICA) and linear prediction. The MSICA is the method previously proposed by the authors, in which frequency-domain ICA (FDICA) for a rough separation is followed by time-domain ICA (TDICA) to remove residual crosstalk. For temporally correlated signals, we must use TDICA with a nonholonomic constrai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2000